Exercise 18

The graph of a function f is shown.
(a) Find the average rate of change of f on the interval [20,60].
(b) Identify an interval on which the average rate of change of f is 0 .
(c) Which interval gives a larger average rate of change, $[40,60]$ or $[40,70]$?
(d) Compute $\frac{f(40)-f(10)}{40-10}$; what does this value represent geometrically?

Solution

Part (a)
The average rate of change on the interval $[20,60]$ is

$$
\frac{f(60)-f(20)}{60-20} \approx \frac{700-300}{40}=\frac{400}{40}=100
$$

where $f(60)$ and $f(20)$ are estimated from the given graph.

Part (b)

The average rate of change on the interval $[10,50]$ is

$$
\frac{f(50)-f(10)}{50-10} \approx \frac{400-400}{40}=\frac{0}{40}=0 .
$$

Part (c)

The average rate of change on the interval $[40,60]$ is

$$
\frac{f(60)-f(40)}{60-40} \approx \frac{700-200}{20}=\frac{500}{20}=25,
$$

whereas the average rate of change on the interval $[40,70]$ is

$$
\frac{f(70)-f(40)}{70-40} \approx \frac{900-200}{30}=\frac{700}{30} \approx 23.3 .
$$

Part (d)

The average rate of change on the interval $[10,40]$ is

$$
\frac{f(40)-f(10)}{40-10} \approx \frac{200-400}{30}=-\frac{200}{30} \approx-6.67 .
$$

Geometrically, this is the slope of the secant line to the graph over $[10,40]$.

